Geometrically Exact Theory of Contact Interactions—Applications with Various Methods FEM and FCM

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrically Exact Theory of Contact Interactions–Further Developments and Achievements

The focus of the current contribution is on the development of the unified geometrical formulation of contact algorithms in a covariant form for various geometrical situations of contacting bodies leading to contact pairs: surface-to-surface, line-to-surface, point-to-surface, line-to-line, point-to-line, point-to-point. The construction of the corresponding computational contact algorithms are...

متن کامل

PEG: A geometrically exact contact model for polytopes

We present a formulation of non-penetration constraint between pairs of polytopes which accounts for all possible combinations of active contact between geometric features. This is the first formulation that exactly models the body geometries near points of potential contact, preventing interpenetration while not over-constraining body motions. Unlike many popular methods, ours does not wait fo...

متن کامل

Geometrically-exact, intrinsic theory for dynamics of moving composite plates

Article history: Received 1 February 2008 Received in revised form 4 May 2008 Available online 21 May 2008

متن کامل

Geometrically exact dynamic splines

In this paper, we propose a complete model handling physical simulation of deformable 1D objects. We formulate continuous expressions for stretching, bending and twisting energies. These expressions are mechanically rigorous and geometrically exact. Both elastic and plastic deformations are handled to simulate a wide range of materials. We validate the proposed model on several classical test c...

متن کامل

Coupling Geometrically Exact Cosserat Rods

Cosserat rods are models for long slender objects. Let SE(3) = R3 SO(3) be the 13 group of orientation-preserving rigid body motions of R3 (the special Euclidean 14 group). A configuration of a Cosserat rod is a map φ : [0,1] → SE(3). For each 15 s ∈ [0,1], the value φ(s) = (φr(s),φq(s)) is interpreted as the position φr(s)∈R and 16 orientation φq(s)∈ SO(3) of a rigid rod cross section. Strain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Mathematics and Physics

سال: 2015

ISSN: 2327-4352,2327-4379

DOI: 10.4236/jamp.2015.38126